المتوسطات المتحركة المرجحة: الأساسيات على مر السنين، وجد الفنيون مشكلتين مع المتوسط المتحرك البسيط. تكمن المشكلة الأولى في الإطار الزمني للمتوسط المتحرك (ما). ويعتقد معظم المحللين الفنيين أن العمل السعر. فتح أو إغلاق سعر السهم، لا يكفي على أن تعتمد على التنبؤ بشكل صحيح شراء أو بيع إشارات العمل كروس ما. ولحل هذه المشكلة، يعين المحللون الآن مزيدا من الوزن لأحدث بيانات الأسعار باستخدام المتوسط المتحرك الممتد أضعافا مضاعفة (إما). (مزيد من المعلومات في استكشاف المتوسط المتحرك الموزون أضعاف.) مثال على سبيل المثال، باستخدام ما 10 أيام، فإن المحلل يأخذ سعر الإغلاق لليوم العاشر ويضاعف هذا الرقم قبل 10، في اليوم التاسع من تسعة، والثامنة يوم من قبل ثمانية وهلم جرا إلى أول من ماجستير. وبمجرد تحديد المجموع، يقوم المحلل بعد ذلك بتقسيم الرقم بإضافة المضاعفات. إذا قمت بإضافة مضاعفات المثال ما 10 أيام، فإن الرقم هو 55. ويعرف هذا المؤشر باسم المتوسط المتحرك المرجح خطي. (للحصول على القراءة ذات الصلة، تحقق من المتوسطات المتحركة البسيطة جعل الاتجاهات الوقوف.) العديد من الفنيين مؤمنين بقوة في المتوسط المتحرك السلس أضعافا (إما). وقد تم شرح هذا المؤشر في العديد من الطرق المختلفة التي يخلط بين الطلاب والمستثمرين على حد سواء. ولعل أفضل تفسير يأتي من جون ج. مورفيس التحليل الفني للأسواق المالية، (نشره معهد نيويورك المالي، 1999): يعالج المتوسط المتحرك الممتد أضعافا مضاعفة المشاكل المرتبطة بالمتوسط المتحرك البسيط. فأولا، يعين المتوسط الملمس أضعافا أكبر وزنا أكبر للبيانات الأحدث. ولذلك، فهو متوسط متحرك مرجح. ولكن في حين أنه يولي أهمية أقل لبيانات الأسعار الماضية، فإنه يشمل في حسابه جميع البيانات في حياة الصك. وبالإضافة إلى ذلك، يمكن للمستخدم ضبط الترجيح لإعطاء وزن أكبر أو أقل لسعر الأيام الأخيرة، والذي يضاف إلى نسبة مئوية من قيمة الأيام السابقة. ويضاف مجموع قيمتي النسبة المئوية إلى 100. على سبيل المثال، يمكن تعيين سعر الأيام الأخيرة على وزن 10 (10)، والذي يضاف إلى وزن الأيام السابقة 90 (.90). وهذا يعطي اليوم الأخير 10 من إجمالي الترجيح. هذا سيكون ما يعادل متوسط 20 يوما، من خلال إعطاء سعر الأيام الماضية قيمة أصغر من 5 (.05). الشكل 1: المتوسط المتحرك الملمس أضعافا مضاعفة يظهر الرسم البياني أعلاه مؤشر ناسداك المركب من الأسبوع الأول في أغسطس 2000 إلى 1 يونيو 2001. كما ترون بوضوح، إما، والتي في هذه الحالة تستخدم بيانات سعر الإغلاق فوق لمدة تسعة أيام، لديها إشارات بيع محددة في 8 سبتمبر (تميزت لأسفل أسود لأسفل). وكان هذا هو اليوم الذي كسر فيه المؤشر دون مستوى 4000. يظهر السهم الأسود الثاني آخر أسفل الساق التي الفنيين كانوا يتوقعون فعلا. لم يتمكن ناسداك من توليد ما يكفي من حجم واهتمام من المستثمرين التجزئة لكسر 3000 علامة. ثم ينخفض مرة أخرى إلى أسفل إلى أسفل في 1619.58 في ابريل 4. يتميز الاتجاه الصعودي 12 أبريل السهم. وهنا أغلق المؤشر عند 1،961.46، وبدأ الفنيون في رؤية مديري الصناديق المؤسسية بدءا من التقاط بعض الصفقات مثل سيسكو ومايكروسوفت وبعض القضايا المتعلقة بالطاقة. (اقرأ مقالاتنا ذات الصلة: متحرك متوسط المغلفات: تكرير أداة التداول الشعبي والمتوسط المتحرك ترتد.) مقياس للعلاقة بين التغير في الكمية المطلوبة من سلعة معينة وتغير في سعرها. السعر. إجمالي القيمة السوقية للدولار لكل من أسهم الشركة المعلقة. يتم احتساب القيمة السوقية عن طريق الضرب. فريكسيت قصيرة ل كوتشيفيش إكسيتكوت هو الفرنسية سبينوف من بريكسيت المدى، التي برزت عندما صوتت المملكة المتحدة ل. أمر وضعها مع وسيط يجمع بين ملامح وقف النظام مع تلك من أجل الحد. أمر وقف الحد سوف. جولة من التمويل حيث المستثمرين شراء الأسهم من شركة في تقييم أقل من التقييم وضعت على. نظرية اقتصادية للإنفاق الكلي في الاقتصاد وآثاره على الإنتاج والتضخم. وقد تم تطوير الاقتصاد الكينزي. نسخ حقوق الطبع والنشر. المحتوى على إنفنتوريوبس محمي بموجب حقوق الطبع والنشر وغير متاح لإعادة النشر. عندما يواجه الناس لأول مرة مصطلح الأسي التمهيد قد يعتقدون أن يبدو وكأنه جهنم الكثير من التجانس. مهما كان التمهيد. ثم تبدأ في تصور حساب رياضي معقد من المرجح أن يتطلب درجة في الرياضيات لفهم، ونأمل أن يكون هناك المدمج في وظيفة إكسيل المتاحة إذا كانوا في أي وقت الحاجة إلى القيام بذلك. واقع التجانس الأسي هو أقل بكثير دراماتيكية وأقل بكثير صدمة. والحقيقة هي، تمهيد الأسي هو حساب بسيط جدا أن ينجز مهمة بسيطة إلى حد ما. انها مجرد اسم معقد لأن ما يحدث من الناحية الفنية نتيجة لهذه العملية الحسابية البسيطة هو في الواقع معقدة قليلا. لفهم التجانس الأسي، فإنه يساعد على البدء مع المفهوم العام للتجانس واثنين من الأساليب الشائعة الأخرى المستخدمة لتحقيق التجانس. ما هو التمهيد تجانس هو عملية إحصائية شائعة جدا. في الواقع، نواجه بانتظام البيانات ممهدة في أشكال مختلفة في حياتنا يوما بعد يوم. في أي وقت تستخدم فيه متوسطا لوصف شيء ما، فإنك تستخدم رقم سلس. إذا كنت تفكر في لماذا تستخدم متوسط لوصف شيء ما، سوف تفهم بسرعة مفهوم التجانس. على سبيل المثال، شهدنا فقط أحر الشتاء في السجل. كيف يمكننا أن نقدر هذا جيدا نبدأ مع مجموعات من درجات الحرارة العالية والمنخفضة اليومية للفترة التي نسميها الشتاء لكل سنة في التاريخ المسجل. ولكن هذا يترك لنا مجموعة من الأرقام التي تقفز حول قليلا (وليس مثل كل يوم هذا الشتاء كان أكثر دفئا من الأيام المقابلة من جميع السنوات السابقة). نحن بحاجة إلى عدد الذي يزيل كل هذا القفز من حول البيانات حتى نتمكن من مقارنة أكثر سهولة فصل الشتاء إلى التالي. إزالة القفز حول في البيانات يسمى التنعيم، وفي هذه الحالة يمكننا فقط استخدام متوسط بسيط لإنجاز التجانس. في التنبؤ الطلب، ونحن نستخدم تمهيد لإزالة الاختلاف العشوائي (الضوضاء) من الطلب التاريخي لدينا. وهذا يتيح لنا تحديد أنماط الطلب بشكل أفضل (في المقام الأول الاتجاه والموسمية) ومستويات الطلب التي يمكن استخدامها لتقدير الطلب في المستقبل. الضجيج في الطلب هو نفس المفهوم مثل القفز اليومي حول بيانات درجة الحرارة. ليس من المستغرب أن الطريقة الأكثر شيوعا الناس إزالة الضوضاء من تاريخ الطلب هو استخدام المتوسط العادي على وجه التحديد، وهو المتوسط المتحرك. المتوسط المتحرك يستخدم فقط عدد محدد مسبقا من الفترات لحساب المتوسط، وتلك الفترات تتحرك بمرور الوقت. على سبيل المثال، إذا كان استخدام إم المتوسط المتحرك لمدة 4 أشهر، واليوم هو 1 مايو، إم باستخدام متوسط الطلب الذي حدث في يناير وفبراير ومارس وأبريل. في الأول من حزيران (يونيو)، سأستخدم الطلب من شباط (فبراير) ومارس وأبريل ومايو (أيار). المتوسط المتحرك الموزون. عند استخدام متوسط نقوم بتطبيق نفس الأهمية (الوزن) على كل قيمة في مجموعة البيانات. في المتوسط المتحرك لمدة 4 أشهر، يمثل كل شهر 25 من المتوسط المتحرك. عند استخدام التاريخ الطلب على الطلب الطلب في المستقبل (وخاصة الاتجاه المستقبلي)، منطقي أن يأتي إلى الاستنتاج الذي تريد المزيد من التاريخ الحديث أن يكون لها تأثير أكبر على توقعاتك. يمكننا تكييف حسابنا المتوسط المتحرك لتطبيق مختلف الأوزان لكل فترة للحصول على النتائج المرجوة. نحن نعبر عن هذه الأوزان كنسب مئوية، ويجب أن يصل مجموع جميع الأوزان لجميع الفترات إلى 100. ولذلك، إذا قررنا أن نطبق 35 كوزن لأقرب فترة في المتوسط المتحرك المرجح لمدة 4 أشهر، يمكننا طرح 35 من 100 لإيجاد لدينا 65 المتبقية لتقسيم على مدى 3 فترات أخرى. على سبيل المثال، قد ينتهي بنا الأمر بترجيح 15 و 20 و 30 و 35 على التوالي للأشهر الأربعة (15 20 30 35 100). تجانس الأسي. إذا عدنا إلى مفهوم تطبيق الوزن على آخر فترة (مثل 35 في المثال السابق) ونشر الوزن المتبقي (محسوبا بطرح أحدث وزن فترة 35 من 100 للحصول على 65)، لدينا اللبنات الأساسية لدينا حساب الأسي تمهيد. وتعرف مدخلات التحكم في حساب التجانس الأسي كعامل التمهيد (الذي يطلق عليه أيضا ثابت التجانس). وهي تمثل أساسا الترجيح المطبق على أحدث فترات الطلب. لذلك، حيث استخدمنا 35 كوزن لآخر فترة في حساب المتوسط المتحرك المرجح، يمكننا أيضا اختيار استخدام 35 كعامل تمهيد في حساب التجانس الأسي للحصول على تأثير مماثل. الفرق مع حساب تمهيد الأسي هو أنه بدلا من أن علينا أيضا معرفة مقدار الوزن لتطبيقه على كل فترة سابقة، يتم استخدام عامل التمهيد للقيام بذلك تلقائيا. حتى يأتي هنا الجزء الأسي. إذا استخدمنا 35 كعامل تمهيد، فإن ترجيح آخر طلب للفترات سيكون 35. ترجيح آخر طلب للفترات الأخيرة (الفترة قبل آخر) سيكون 65 من 35 (65 يأتي من طرح 35 من 100). وهذا يعادل 22.75 الترجيح لتلك الفترة إذا كنت تفعل الرياضيات. وسيكون الطلب التالي للفترات الأخيرة 65 من 65 من 35، وهو ما يعادل 14.79. وستتم ترجيح الفترة السابقة لذلك على أنها 65 من 65 من 65 من 35، أي ما يعادل 9.61، وما إلى ذلك. وهذا يسير مرة أخرى من خلال كل ما تبذلونه من فترات السابقة على طول الطريق إلى بداية الوقت (أو النقطة التي كنت بدأت باستخدام تمهيد الأسي لهذا البند معين). ربما كنت تفكر في أن تبدو وكأنها الكثير من الرياضيات. ولكن جمال حساب التجانس الأسي هو أنه بدلا من الاضطرار إلى إعادة حساب مقابل كل فترة سابقة في كل مرة تحصل على طلب فترات جديدة، يمكنك ببساطة استخدام الإخراج من حساب تمهيد الأسي من الفترة السابقة لتمثيل جميع الفترات السابقة. هل أنت الخلط حتى هذا وسوف تجعل أكثر منطقية عندما ننظر إلى الحساب الفعلي عادة نشير إلى إخراج حساب تمهيد الأسي كما توقعات الفترة المقبلة. في الواقع، فإن التوقعات النهائية تحتاج إلى المزيد من العمل، ولكن لأغراض هذا الحساب المحدد، وسوف نشير إليها على أنها التوقعات. حساب التجانس الأسي هو كما يلي: طلب الفترات الأخيرة مضروبا في عامل التمهيد. بلوس أحدث الفترات المتوقعة مضروبة في (واحد ناقص عامل التجانس). D أحدث فترات الطلب S عامل التمهيد ممثلة في شكل عشري (حتى 35 سيتم تمثيلها على أنها 0.35). F أحدث الفترات المتوقعة (ناتج حساب التجانس من الفترة السابقة). أو (على افتراض عامل تمهيد 0.35) (D 0.35) (F 0.65) أنها لا تحصل على أبسط من ذلك بكثير. كما ترون، كل ما نحتاجه من أجل مدخلات البيانات هنا هو أحدث طلب لفترات وأحدث الفترات المتوقعة. نطبق عامل التمهيد (الترجيح) على أحدث الفترات التي تتطلب نفس الطريقة التي نفعلها في حساب المتوسط المتحرك المرجح. ثم نطبق الترجيح المتبقي (1 ناقص عامل التجانس) إلى أحدث الفترات المتوقعة. وبما أن أحدث الفترات المتوقعة تم إنشاؤها بناء على طلب الفترات السابقة وتوقعات الفترات السابقة التي استندت إلى الطلب على الفترة السابقة لذلك والتنبؤ بالفترة السابقة لذلك والذي استند إلى الطلب على الفترة السابقة وتوقعات الفترة السابقة لذلك، التي استندت إلى الفترة السابقة لذلك. حسنا، يمكنك أن ترى كيف يتم تمثيل جميع فترات الفترات السابقة الطلب في الحساب دون العودة فعلا وإعادة حساب أي شيء. وهذا ما دفع شعبية الأولي من التمهيد الأسي. لم يكن ذلك لأنه كان أفضل وظيفة من تمهيد من المتوسط المتحرك المرجح، كان ذلك لأنه كان من الأسهل لحساب في برنامج الكمبيوتر. ولأنك لم تحتاج إلى التفكير في الترجيح لإعطاء الفترات السابقة أو عدد الفترات السابقة التي ستستخدمها، كما تفعل في المتوسط المتحرك المرجح. و، لأنه بدا فقط برودة من المتوسط المتحرك المرجح. في الواقع، يمكن القول بأن المتوسط المتحرك المرجح يوفر مرونة أكبر لأن لديك المزيد من السيطرة على ترجيح الفترات السابقة. الواقع هو إما من هذه يمكن أن توفر نتائج محترمة، فلماذا لا تذهب مع أسهل وأكثر برودة السبر. التمدد الأسي في إكسيل يتيح رؤية كيفية ظهور ذلك في جدول بيانات يحتوي على بيانات حقيقية. نسخ حقوق الطبع والنشر. المحتوى على إنفنتوريوبس محمي بموجب حقوق الطبع والنشر وغير متاح لإعادة النشر. في الشكل 1A، لدينا جدول إكسل مع 11 أسبوعا من الطلب، وتوقعات أملس أضعافا محسوبة من هذا الطلب. إيف استخدم عامل تمهيد 25 (0.25 في الخلية C1). الخلية النشطة الحالية هي الخلية M4 التي تحتوي على توقعات للأسبوع 12. يمكنك أن ترى في شريط الصيغة، والصيغة هي (L3C1) (L4 (1-C1)). لذا فإن المدخلات المباشرة الوحيدة لهذا الحساب هي الطلب على الفترات السابقة (الخلية L3)، وتوقعات الفترات السابقة (الخلية L4)، وعامل التجانس (الخلية C1، الموضحة كمرجع الخلية المطلق C1). عندما نبدأ حساب تمهيد الأسي، نحن بحاجة إلى سد قيمة يدويا للتوقعات 1ST. حتى في الخلية B4، بدلا من الصيغة، ونحن فقط كتب في الطلب من نفس الفترة من التوقعات. في الخلية C4 لدينا لدينا 1 الأسي حساب تمهيد (B3C1) (B4 (1-C1)). يمكننا بعد ذلك نسخ الخلية C4 ولصقه في الخلايا من D4 إلى M4 لملء بقية الخلايا توقعاتنا. يمكنك الآن انقر نقرا مزدوجا فوق على أي خلية توقعات لنرى أنه يقوم على الخلية السابقة الفترات المتوقعة وخلايا الطلب فترات السابقة. لذلك كل حساب تمهيد الأسي اللاحقة يرث الإخراج من حساب التجانس الأسي السابق. ولكيف يتم تمثيل كل طلب فترات سابقة في حساب الفترات الأخيرة على الرغم من أن هذا الحساب لا يشير مباشرة إلى تلك الفترات السابقة. إذا كنت ترغب في الحصول على الهوى، يمكنك استخدام إكسيلز تتبع السوابق وظيفة. للقيام بذلك، انقر فوق الخلية M4، ثم على شريط الأدوات الشريط (إكسيل 2007 أو 2010) انقر فوق علامة التبويب الصيغ، ثم انقر فوق تتبع السوابق. فإنه سيتم رسم خطوط الموصل إلى المستوى الأول من السوابق، ولكن إذا كنت الاستمرار في النقر تتبع السوابق فإنه سيتم رسم خطوط موصل لجميع الفترات السابقة لتظهر لك العلاقات الموروثة. الآن دعونا نرى ما تمهيد الأسي لم بالنسبة لنا. ويبين الشكل 1B مخطط خطي لطلبنا والتوقعات. أنت ترى كيف أن التوقعات الملساء أضعافا يزيل معظم الخدش (القفز حول) من الطلب الأسبوعي، ولكن لا يزال يدير لمتابعة ما يبدو أن الاتجاه التصاعدي في الطلب. ويلاحظ أيضا أن خط التنبؤ ممهدة يميل إلى أن يكون أقل من خط الطلب. هذا هو المعروف باسم تأخر الاتجاه و هو تأثير جانبي لعملية تمهيد. في أي وقت كنت تستخدم تمهيد عندما يكون الاتجاه الحالي توقعاتك سوف تتخلف عن الاتجاه. هذا صحيح لأي تقنية تمهيد. في الواقع، إذا كان لنا أن نستمر في جدول البيانات هذا وبدء إدخال أرقام الطلب المنخفض (مما يجعل الاتجاه الهابط) سترى انخفاض خط الطلب، وخط الاتجاه التحرك فوقه قبل البدء في اتباع الاتجاه النزولي. ولهذا السبب سبق أن ذكرت الإخراج من حساب تمهيد الأسي الذي نسميه توقعات، لا يزال يحتاج الى مزيد من العمل. هناك الكثير للتنبؤ من مجرد تمهيد المطبات في الطلب. نحن بحاجة إلى إجراء تعديلات إضافية لأشياء مثل تأخر الاتجاه، والموسمية، والأحداث المعروفة التي قد تؤثر الطلب، وما إلى ذلك ولكن كل ما هو أبعد من نطاق هذه المادة. ومن المحتمل أن تتعامل أيضا مع مصطلحات مثل التجانس المزدوج الأسي والتجانس الثلاثي الأسي. هذه المصطلحات هي مضللة بعض الشيء لأنك لا إعادة تمهيد الطلب عدة مرات (هل يمكن إذا كنت تريد، ولكن هذا ليس نقطة هنا). وتمثل هذه المصطلحات استخدام التمهيد الأسي للعناصر الإضافية للتنبؤات. حتى مع تمهيد الأسي بسيط، كنت تمهيد الطلب قاعدة، ولكن مع تجانس مزدوج الأسي كنت تمهيد الطلب قاعدة بالإضافة إلى الاتجاه، ومع تمهيد الثلاثي الأسي كنت تمهيد الطلب الأساسي بالإضافة إلى الاتجاه بالإضافة إلى الموسمية. السؤال الآخر الأكثر شيوعا حول تمهيد الأسي هو أين يمكنني الحصول على عامل تجانس بلدي ليس هناك إجابة السحرية هنا، تحتاج إلى اختبار مختلف العوامل تمهيد مع بيانات الطلب الخاص بك لمعرفة ما يحصل لك أفضل النتائج. هناك حسابات التي يمكن تلقائيا تعيين (وتغيير) عامل تمهيد. هذه تقع تحت مصطلح التجانس التكيف، ولكن عليك أن تكون حذرا معهم. ببساطة لا يوجد إجابة كاملة ويجب أن لا تنفذ بشكل أعمى أي حساب دون اختبار شامل وتطوير فهم دقيق لما يفعله هذا الحساب. يجب عليك أيضا تشغيل سيناريوهات ماذا لو لرؤية كيف تتفاعل هذه الحسابات مع التغييرات التي قد لا توجد حاليا في بيانات الطلب التي تستخدمها للاختبار. مثال البيانات الذي استخدمته سابقا هو مثال جيد جدا على الوضع الذي تحتاج فيه حقا لاختبار بعض السيناريوهات الأخرى. ويظهر مثال البيانات المعين هذا اتجاها تصاعديا متسقا إلى حد ما. فالكثير من الشركات الكبيرة التي لديها برامج تنبؤات باهظة الثمن حصلت على مشاكل كبيرة في الماضي غير البعيد عندما لم تكن إعدادات البرامج التي تم تعديلها لاقتصاد متنام تتفاعل بشكل جيد عندما بدأ الاقتصاد في الركود أو الانكماش. أشياء مثل هذا يحدث عندما كنت لا تفهم ما الحسابات الخاصة بك (البرمجيات) هو في الواقع. إذا فهموا نظام التنبؤ بهم، كانوا قد عرفوا أنهم بحاجة إلى القفز في وتغيير شيء عندما كانت هناك تغييرات مفاجئة مفاجئة في أعمالهم. لذلك هناك يكون لديك أساسيات الأسس تمهيد شرح. تريد أن تعرف المزيد عن استخدام التجانس الأسي في التنبؤ الفعلي، تحقق من كتابي شرح إدارة المخزون. نسخ حقوق الطبع والنشر. المحتوى على إنفنتوريوبس محمي بموجب حقوق الطبع والنشر وغير متاح لإعادة النشر. ديف بياسيكي. هو أونيروبيراتور من جرد العمليات استشارات ليك. وهي شركة استشارية تقدم الخدمات المتعلقة بإدارة المخزون، ومناولة المواد، وعمليات المستودعات. لديه أكثر من 25 عاما من الخبرة في إدارة العمليات ويمكن الوصول إليه من خلال موقعه على الانترنت (إنفنتوريوبس)، حيث يحافظ على معلومات إضافية ذات صلة. عملي PM2000 الدعم المقالات المتوسط المتحرك المتوسط المرجح (فوما) (v16) حساب المتوسط المتحرك المتوسط المرجح لم يتم بناء المتوسطات المتحركة المرجحة الأمامية في صيغة صيغة المعايير الشخصية ولكن بناء فوما في بف هو واضح إلى حد ما. يتم حساب المتوسط المتحرك المرجح الأمامي باستخدام أشرطة الفترة من البيانات. لذا، يتطلب المتوسط المتحرك المتوسط المرجح لفترة 2 بارين من البيانات لحسابه، ويتطلب المتوسط المتحرك المتوسط المرجح لمدة 30 فترة حساب 30 بارا من البيانات. ويطلق على المتوسط المتحرك الأوزان الأمامية لأن البيانات الأحدث تعطي وزنا أكبر من البيانات القديمة في الحسابات. كل شريط أقدم يقلل العامل المستخدم لحسابات 1 عندما كنت لا عد المقاسم المستخدمة لحساب ككل. يتم ضرب أحدث شريط في الفترة ثم كل شريط أقدم يقلل من هذا واحد حتى يتم ضرب أقدم البيانات المستخدمة في الحساب في 1. ثم يتم تقسيم النتيجة على مجموع العوامل المستخدمة لكل شريط. لذلك يمكن حساب المتوسط المتحرك المتوسط المرجح لفترة 2 على النحو التالي. (2 C 1 C1) (2 1) والتي يمكن تبسيطها لما يلي. ويمكن حساب المتوسط المتحرك المتوسط المرجح لفترة 3 على النحو التالي. (3 C 2 C1 1 C2) (3 2 1) والتي يمكن تبسيطها لما يلي. (3 C 2 C1 C2) 6 يستمر هذا النمط مع زيادة الفترة.
No comments:
Post a Comment